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Goals
1.1

What are we doing and why are we doing it?
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What are 
security-relevant 

properties of 
computer hardware?
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Collect

1. Model processor 
in software

2. Record register 
transfers

Analyze Report

Research Process

3. Mine traces for 
properties

4. Check properties 
against common 
weaknesses

5. Security 
properties found!
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Background
1.2

What exactly are we studying here?
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Simulation

Virtualizing Hardware
Emulation

— Recreates a processor at register 
transfer level (RTL)
— Modeling the actual 

configuration of wires and 
transistors in software

— Recreates an instruction-set 
architecture (ISA)

— Doesn’t replicate specific 
hardware idiosyncrasies, 
only its instruction set

https://www.flaticon.com/free-icons/chip
https://www.flaticon.com/free-icons/chip
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― Contained in memory
— Addresses correspond to values in the program counter

― Control information flow through the processor
— Performing operations (arithmetic, load/store, navigation)

Instructions

What How Where Operation

Immediate
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RISC CISC
- One operation per 

instruction
- “Load-Store” architecture
- More difficult to write 

programs in assembly
- ARM

- “Microcoding”
- Instructions execute multiple 

operations at once
- Smaller programs
- Fewer main memory accesses
- x86

ISA Paradigms
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— CISC processors are proprietary trade secrets

— RISC architectures are easier to study
— Fixed-length instructions
— One instruction -> one operation

— RISC-V is an open-source design
— Funded by Intel and AMD

Why Study RISC?
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RISC-V
Emulation is the highest form of 

flattery

02
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- Highly customizable to different configurations
- Designed for academic study and hardware implementation
- 32- and 64-bit variants

General Purpose Registers x0-x31
― x0 is fixed to value 0
― x1-x31 are read as booleans or (un)signed 2’s complement integers

Floating-point registers f0-f31
― Correspond to IEEE standard for floating-point

Control and Status Registers
― 4096 CSRs, mostly used by the privileged architecture

— Some use in unprivileged code, mostly as counters and timers
— Exceptions, interrupts, traps, control transfer

The RISC-V Spec

https://riscv.org/technical/specifications/
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1. Download Qemu

2. Build RISC-V emulator

a. $ sudo apt install qemu-system-misc

This includes the qemu-system-riscv64 
and riscv32 commands, which allows Qemu 
to boot executable files with the RISC-V 
virt emulator. It also includes several 
additional emulators.

Configuring Qemu

https://www.qemu.org/download
https://wiki.qemu.org/Documentation/Platforms/RISCV
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In:
$ git clone https://github.com/riscv/riscv-gnu-toolchain --recursive
$ sudo apt-get install autoconf automake autotools-dev curl python3 [...]
$ ./configure --prefix=/opt/riscv --enable-multilib
$ sudo make linux

[A few hours pass]

Out:
[...]
gcc: error: unrecognized argument in option ‘-mcmodel=medany’
gcc: note: valid arguments to ‘-mcmodel=’ are: 32 kernel large medium small
make: *** [Makefile:319: file.o] Error 1

The RISC-V Toolchain

https://github.com/riscv-collab/riscv-gnu-toolchain
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“Hello World”
.global _start

_start:

lui t0, 0x10000

andi t1, t1, 0
addi t1, t1, 72
sw t1, 0(t0)

[...]

finish:
beq t1, t1, finish

Initialize the program at “_start” label

Load address of serial port into register t0

Zero out t1
Add (int)’H’ = 72 to t1
Send value of t1 == ‘H’ to location addressed by t0 (UART0)

The previous three lines are repeated for ‘e’,‘l’,’l’,’o’ 
and finally LF (line feed, aka ‘\n’)

Jump to label finish if t1==t1

https://theintobooks.wordpress.com/2019/12/28/hello-world-on-risc-v-with-qemu
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Bare-Metal Programs on RISC-V

.s Q

Program Linked ELFELF File Output

Assembler Linker Emulator

Trace

…
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After downloading the Fedora 
prebuilt images, decompress 
and boot according to the 

Qemu documentation.

Booting Fedora

Above: a sample session in the Fedora emulation

https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/images/
https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/images/
https://wiki.qemu.org/Documentation/Platforms/RISCV#Booting_64-bit_Fedora


021

Data Mining

.py

.dtraceAphrodite

Pr
og
ra
m

Q

.decls

.py

make_decls

Daikon Properties

https://plse.cs.washington.edu/daikon/
https://github.com/wu-jldeyoung/Aphrodite/blob/main/src/utils/make_decls.py
https://plse.cs.washington.edu/daikon/
https://github.com/wu-jldeyoung/Aphrodite/blob/main/daikon_output.txt
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Aphrodite03 Now how do we do all that?
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Aphrodite.py

Q

Linked 
ELF

pexpect.
spawn()

QEMU

info
registers

Register 
Values .dtrace

re.
findall()

https://github.com/wu-jldeyoung/Aphrodite/blob/main/src/utils/aphrodite.py
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args = [

"-machine", "virt", "-kernel", exe, 

"-monitor", "stdio", "-S",    

# options for running Fedora

"-smp","4", "-m","2G", "-bios", 

"none",[...]

]

qemu = px.spawn("qemu-system-riscv64", 

   args, encoding="utf-8")

qemu.expect(".*(qemu)")

qemu.sendline("info registers")

qemu.expect("(qemu)")

qemu.sendline("c")

Using QEMU in Aphrodite

Above: a sample session in the Fedora emulation
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The Trick: collecting register values without changing any of them.

Tools:
- riscv-probe (CSRs)

- Qemu debugging tools (GPRs)
- Logging (-d cpu)
- Qemu built-in “trace”
- Monitor -> info registers
- GDB (GNU debugger)

- Multiarch
- riscv64-gdb

- Qemu source (fprintf hacking)
- Qemu wrapper to inject commands to monitor and write output to file

- subprocess library
- pexpect library

Gathering Register Values

https://github.com/michaeljclark/riscv-probe
https://www.qemu.org/docs/master/devel/tracing.html
https://qemu.readthedocs.io/en/latest/system/monitor.html
https://qemu.readthedocs.io/en/latest/system/gdb.html
https://docs.python.org/3/library/subprocess.html
https://pexpect.readthedocs.io/en/stable/
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1. Start QEMU with a linked ELF as input
    - start the VM paused (`-S`)
    - `-monitor stdio` so program can write commands to monitor
2. Ping monitor every so often (specify as commandline option?)
    - build a simple character driver to use instead of `stdio`?
    - write this output to a trace file

- QEMU “single-step” mode (take the first N cycles)
3. Terminate VM
    - send `quit` command (or simply `q`) to monitor
    - quit condition?
    - timeout
    -> fixed time?
    -> based on last output change (pc?)
    - user-specified?
    -> if the program is reading/writing to the
   monitor console, does that mean the user can issue a `quit`?
    -> does the user ping the script, or the monitor?

qscript (pseudocode)
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qtrace .dtrace
i\x1b[K\x1b[Din\x1b[K\[...]
pc   0000000000001000\r
mhartid  0000000000000000\r
[...]
x0/zero 0000000000000000 
x1/ra 0000000000000000 
x2/sp 0000000000000000 
x3/gp 0000000000000000\r
[...]
f28/ft8 0000000000000000 
f29/ft9 0000000000000000 
f30/ft10 0000000000000000 
f31/ft11 0000000000000000\r
[...]

..tick():::ENTER
this_invocation_nonce
1
pc
4096
1
mhartid
0
1
[...]
f31/ft11
0
1

Trace formats

https://github.com/wu-jldeyoung/Aphrodite/blob/main/src/utils/trace/qtrace_first.txt
https://github.com/wu-jldeyoung/Aphrodite/blob/main/src/utils/trace/20220805-172853.dtrace
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1. Parse register values into a list
a. QEMU logs don’t parse each timestep neatly (is this a reason not to use them?))
b. Monitor output (qtraces) can parse each timestep

i. Is there a potential for duplicate data?
ii. I can parse to Daikon format at runtime and only write to file once

iii. qtraces contain FPR values.
2. Add list generated in (1.) to a 2D list of all timesteps

a. Get rid of any empty sublists (or completely ignore identical data)
3. Parse this 2D list into Daikon .dtrace format and write to file

Conclusion: pexpect monitor traces are a better solution that QEMU native debugging.

Parsing qtrace to dtrace
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Parsing qtrace to dtrace

1. Create a .dtrace file and give it a unique name based on current system time

2. Spawn QEMU with initial parameters

3. While not timed out:

a. Parse info registers output for register values, adding to list vals

b. If vals is not equal to the last timepoint and is nonempty:

i. Split vals entries into tuples: (label, value)

ii. Cast the value hex string to an integer

iii. Write these label/value pairs to .dtrace in the appropriate format

c. Send next info registers command to QEMU

4. Quit QEMU and close .dtrace
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Parsing qtrace to dtrace
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Data Mining

.py

.dtraceAphrodite

Pr
og
ra
m

Q

.decls

.py

make_decls

Daikon Properties

https://plse.cs.washington.edu/daikon/
https://github.com/wu-jldeyoung/Aphrodite/blob/main/src/utils/make_decls.py
https://plse.cs.washington.edu/daikon/
https://github.com/wu-jldeyoung/Aphrodite/blob/main/daikon_output.txt
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f21/fs5 == f26/fs10

pc != 0

mhartid == 0

mip >= 0

mideleg one of { 0, 546 }

medeleg one of { 0, 45321 }

mtvec one of { 0, 2147484904L }

x0/zero == 0

f0/ft0 >= 0

[...]

f16/fa6 >= 0

f19/fs3 one of { 0, 4607182418800017408L }

f20/fs4 one of { -4616189618054758400L, 0 }

f21/fs5 one of { 0, 4472406533629990549L }

f22/fs6 >= 0

Properties
f23/fs7 >= 0

f24/fs8 one of { 0, 4607182418800017408L }

f25/fs9 one of { -4616189618054758400L, 0 }

[...]

pc != mhartid

[...]

mhartid <= mip

[...]

mip <= mie

[...]

mie <= mtvec

mideleg <= medeleg

[...]

mtvec >= mcause

f0/ft0 >= f20/fs4

[...]

https://github.com/wu-jldeyoung/Aphrodite/blob/main/daikon_output.txt
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Aphrodite verifies 
properties guaranteed 

by the ISA specification.
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The REU 
Experience04
Faff around. Find out. Get paid.
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Whiteboard Notes (overall checklist)
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Flowchart Draft (slide 18)
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Whiteboard Notes (slide 25)
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CREDITS: This presentation template was created by Slidesgo, and 
includes icons by Flaticon, and infographics & images by Freepik

Questions?
jldeyoung@willamette.edu 

jldeyoung.github.io
github.com/wu-jldeyoung

Please keep this slide for attribution

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
mailto:jldeyoung@willamette.edu
https://jldeyoung.github.io/index.html
https://github.com/wu-jldeyoung

