
01

Aphrodite

Juni L DeYoung
NWSA-AAASPD 2023 Meeting

Western Washington University
22 March 2023

Security
Properties of
RISC-V

Summer 2022
Juni L DeYoung

Professor Calvin Deutschbein
Willamette University

Juni L DeYoung
CS/DS Tea

Willamette University
2022-11-10 11:30 PST

02

Overview
01 Computer architecture,

instruction sets, and
emulation

Emulating RISC-V
02 Data generation is a

complicated profession

Aphrodite
03 Design choices and the

engineering process

The REU Experience
04 What is it like doing CS

research over the summer?

Table of contents

04

Overview01

05

Goals
1.1

What are we doing and why are we doing it?

06

What are
security-relevant

properties of
computer hardware?

07

Collect

1. Model processor
in software

2. Record register
transfers

Analyze Report

Research Process

3. Mine traces for
properties

4. Check properties
against common
weaknesses

5. Security
properties found!

08

Background
1.2

What exactly are we studying here?

09

Computer Anatomy
I
/
O

M
e
m
o
r
y

S
t
o
r
a
g
e

CPU

CSRs

Clock

PC

IR

A
L
U

F
P
U

GPRs

FPRs

010

Simulation

Virtualizing Hardware
Emulation

— Recreates a processor at register
transfer level (RTL)
— Modeling the actual

configuration of wires and
transistors in software

— Recreates an instruction-set
architecture (ISA)

— Doesn’t replicate specific
hardware idiosyncrasies,
only its instruction set

https://www.flaticon.com/free-icons/chip
https://www.flaticon.com/free-icons/chip

011

― Contained in memory
— Addresses correspond to values in the program counter

― Control information flow through the processor
— Performing operations (arithmetic, load/store, navigation)

Instructions

What How Where Operation

Immediate

012

RISC CISC
- One operation per

instruction
- “Load-Store” architecture
- More difficult to write

programs in assembly
- ARM

- “Microcoding”
- Instructions execute multiple

operations at once
- Smaller programs
- Fewer main memory accesses
- x86

ISA Paradigms

013

— CISC processors are proprietary trade secrets

— RISC architectures are easier to study
— Fixed-length instructions
— One instruction -> one operation

— RISC-V is an open-source design
— Funded by Intel and AMD

Why Study RISC?

014

RISC-V
Emulation is the highest form of

flattery

02

015

- Highly customizable to different configurations
- Designed for academic study and hardware implementation
- 32- and 64-bit variants

General Purpose Registers x0-x31
― x0 is fixed to value 0
― x1-x31 are read as booleans or (un)signed 2’s complement integers

Floating-point registers f0-f31
― Correspond to IEEE standard for floating-point

Control and Status Registers
― 4096 CSRs, mostly used by the privileged architecture

— Some use in unprivileged code, mostly as counters and timers
— Exceptions, interrupts, traps, control transfer

The RISC-V Spec

https://riscv.org/technical/specifications/

016

1. Download Qemu

2. Build RISC-V emulator

a. $ sudo apt install qemu-system-misc

This includes the qemu-system-riscv64
and riscv32 commands, which allows Qemu
to boot executable files with the RISC-V
virt emulator. It also includes several
additional emulators.

Configuring Qemu

https://www.qemu.org/download
https://wiki.qemu.org/Documentation/Platforms/RISCV

017

In:
$ git clone https://github.com/riscv/riscv-gnu-toolchain --recursive
$ sudo apt-get install autoconf automake autotools-dev curl python3 [...]
$./configure --prefix=/opt/riscv --enable-multilib
$ sudo make linux

[A few hours pass]

Out:
[...]
gcc: error: unrecognized argument in option ‘-mcmodel=medany’
gcc: note: valid arguments to ‘-mcmodel=’ are: 32 kernel large medium small
make: *** [Makefile:319: file.o] Error 1

The RISC-V Toolchain

https://github.com/riscv-collab/riscv-gnu-toolchain

018

“Hello World”
.global _start

_start:

lui t0, 0x10000

andi t1, t1, 0
addi t1, t1, 72
sw t1, 0(t0)

[...]

finish:
beq t1, t1, finish

Initialize the program at “_start” label

Load address of serial port into register t0

Zero out t1
Add (int)’H’ = 72 to t1
Send value of t1 == ‘H’ to location addressed by t0 (UART0)

The previous three lines are repeated for ‘e’,‘l’,’l’,’o’
and finally LF (line feed, aka ‘\n’)

Jump to label finish if t1==t1

https://theintobooks.wordpress.com/2019/12/28/hello-world-on-risc-v-with-qemu

019

Bare-Metal Programs on RISC-V

.s Q

Program Linked ELFELF File Output

Assembler Linker Emulator

Trace

…

020

After downloading the Fedora
prebuilt images, decompress
and boot according to the

Qemu documentation.

Booting Fedora

Above: a sample session in the Fedora emulation

https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/images/
https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/images/
https://wiki.qemu.org/Documentation/Platforms/RISCV#Booting_64-bit_Fedora

021

Data Mining

.py

.dtraceAphrodite

Pr
og
ra
m

Q

.decls

.py

make_decls

Daikon Properties

https://plse.cs.washington.edu/daikon/
https://github.com/wu-jldeyoung/Aphrodite/blob/main/src/utils/make_decls.py
https://plse.cs.washington.edu/daikon/
https://github.com/wu-jldeyoung/Aphrodite/blob/main/daikon_output.txt

022

Aphrodite03 Now how do we do all that?

023

Aphrodite.py

Q

Linked
ELF

pexpect.
spawn()

QEMU

info
registers

Register
Values .dtrace

re.
findall()

https://github.com/wu-jldeyoung/Aphrodite/blob/main/src/utils/aphrodite.py

024

args = [

"-machine", "virt", "-kernel", exe,

"-monitor", "stdio", "-S",

options for running Fedora

"-smp","4", "-m","2G", "-bios",

"none",[...]

]

qemu = px.spawn("qemu-system-riscv64",

 args, encoding="utf-8")

qemu.expect(".*(qemu)")

qemu.sendline("info registers")

qemu.expect("(qemu)")

qemu.sendline("c")

Using QEMU in Aphrodite

Above: a sample session in the Fedora emulation

025

The Trick: collecting register values without changing any of them.

Tools:
- riscv-probe (CSRs)

- Qemu debugging tools (GPRs)
- Logging (-d cpu)
- Qemu built-in “trace”
- Monitor -> info registers
- GDB (GNU debugger)

- Multiarch
- riscv64-gdb

- Qemu source (fprintf hacking)
- Qemu wrapper to inject commands to monitor and write output to file

- subprocess library
- pexpect library

Gathering Register Values

https://github.com/michaeljclark/riscv-probe
https://www.qemu.org/docs/master/devel/tracing.html
https://qemu.readthedocs.io/en/latest/system/monitor.html
https://qemu.readthedocs.io/en/latest/system/gdb.html
https://docs.python.org/3/library/subprocess.html
https://pexpect.readthedocs.io/en/stable/

026

1. Start QEMU with a linked ELF as input
 - start the VM paused (`-S`)
 - `-monitor stdio` so program can write commands to monitor
2. Ping monitor every so often (specify as commandline option?)
 - build a simple character driver to use instead of `stdio`?
 - write this output to a trace file

- QEMU “single-step” mode (take the first N cycles)
3. Terminate VM
 - send `quit` command (or simply `q`) to monitor
 - quit condition?
 - timeout
 -> fixed time?
 -> based on last output change (pc?)
 - user-specified?
 -> if the program is reading/writing to the
 monitor console, does that mean the user can issue a `quit`?
 -> does the user ping the script, or the monitor?

qscript (pseudocode)

027

qtrace .dtrace
i\x1b[K\x1b[Din\x1b[K\[...]
pc 0000000000001000\r
mhartid 0000000000000000\r
[...]
x0/zero 0000000000000000
x1/ra 0000000000000000
x2/sp 0000000000000000
x3/gp 0000000000000000\r
[...]
f28/ft8 0000000000000000
f29/ft9 0000000000000000
f30/ft10 0000000000000000
f31/ft11 0000000000000000\r
[...]

..tick():::ENTER
this_invocation_nonce
1
pc
4096
1
mhartid
0
1
[...]
f31/ft11
0
1

Trace formats

https://github.com/wu-jldeyoung/Aphrodite/blob/main/src/utils/trace/qtrace_first.txt
https://github.com/wu-jldeyoung/Aphrodite/blob/main/src/utils/trace/20220805-172853.dtrace

028

1. Parse register values into a list
a. QEMU logs don’t parse each timestep neatly (is this a reason not to use them?))
b. Monitor output (qtraces) can parse each timestep

i. Is there a potential for duplicate data?
ii. I can parse to Daikon format at runtime and only write to file once

iii. qtraces contain FPR values.
2. Add list generated in (1.) to a 2D list of all timesteps

a. Get rid of any empty sublists (or completely ignore identical data)
3. Parse this 2D list into Daikon .dtrace format and write to file

Conclusion: pexpect monitor traces are a better solution that QEMU native debugging.

Parsing qtrace to dtrace

029

Parsing qtrace to dtrace

1. Create a .dtrace file and give it a unique name based on current system time

2. Spawn QEMU with initial parameters

3. While not timed out:

a. Parse info registers output for register values, adding to list vals

b. If vals is not equal to the last timepoint and is nonempty:

i. Split vals entries into tuples: (label, value)

ii. Cast the value hex string to an integer

iii. Write these label/value pairs to .dtrace in the appropriate format

c. Send next info registers command to QEMU

4. Quit QEMU and close .dtrace

030

Parsing qtrace to dtrace

031

Data Mining

.py

.dtraceAphrodite

Pr
og
ra
m

Q

.decls

.py

make_decls

Daikon Properties

https://plse.cs.washington.edu/daikon/
https://github.com/wu-jldeyoung/Aphrodite/blob/main/src/utils/make_decls.py
https://plse.cs.washington.edu/daikon/
https://github.com/wu-jldeyoung/Aphrodite/blob/main/daikon_output.txt

032

f21/fs5 == f26/fs10

pc != 0

mhartid == 0

mip >= 0

mideleg one of { 0, 546 }

medeleg one of { 0, 45321 }

mtvec one of { 0, 2147484904L }

x0/zero == 0

f0/ft0 >= 0

[...]

f16/fa6 >= 0

f19/fs3 one of { 0, 4607182418800017408L }

f20/fs4 one of { -4616189618054758400L, 0 }

f21/fs5 one of { 0, 4472406533629990549L }

f22/fs6 >= 0

Properties
f23/fs7 >= 0

f24/fs8 one of { 0, 4607182418800017408L }

f25/fs9 one of { -4616189618054758400L, 0 }

[...]

pc != mhartid

[...]

mhartid <= mip

[...]

mip <= mie

[...]

mie <= mtvec

mideleg <= medeleg

[...]

mtvec >= mcause

f0/ft0 >= f20/fs4

[...]

https://github.com/wu-jldeyoung/Aphrodite/blob/main/daikon_output.txt

033

Aphrodite verifies
properties guaranteed

by the ISA specification.

034

The REU
Experience04
Faff around. Find out. Get paid.

035

Whiteboard Notes (overall checklist)

036

Flowchart Draft (slide 18)

037

Whiteboard Notes (slide 25)

038

CREDITS: This presentation template was created by Slidesgo, and
includes icons by Flaticon, and infographics & images by Freepik

Questions?
jldeyoung@willamette.edu

jldeyoung.github.io
github.com/wu-jldeyoung

Please keep this slide for attribution

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
mailto:jldeyoung@willamette.edu
https://jldeyoung.github.io/index.html
https://github.com/wu-jldeyoung

