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Abstract

Corner rectangle visibility graphs (CRVGs) combine two existing
lines of inquiry in graph theory: rectangle visibility graphs (RVGs)
and rectangle-of-influence graphs (RIGs). An RVG uses vertical and
horizontal bands of sight between axis-parallel rectangles in the plane
to construct a graph whose vertices and edges correspond to rectangles
and visibility bands respectively. RIGs are a straight-line embedding
of a graph, where edges can be represented as empty axis-parallel rect-
angles of influence with adjacent vertices at opposing corners of the RI.
We define CRVGs by giving each rectangle a single eye in its corner
and defining visibility relations accordingly. We prove that families
of graphs, including paths, cycles, wheels, trees, k-partite graphs up
to k = 4, and complete graphs Kn for n ≤ 5 are representable by
corner rectangle diagrams. Our work further analyzes the maximum
number of edges e that can be drawn in restricted CRVG represen-
tations: (1) where all rectangles look the same direction (SCRVGs),

e =
[
n2

4

]
+ n − 2; and (2) where all rectangles look in orthogonal

directions (SWCRVGs), e =
[
n2

3 + n
3

]
− 1.
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Figure 1: A complete graph (K4), a double fan, and a bipartite graph.

1 Background

1.1 Graphs

A graph G = (V,E) is a set of vertices and edges (or alternately, nodes and
arcs, respectively). Vertices are typically represented as points in the plane,
and edges as curves connecting two vertices. Figure 1 shows three graphs
relevant to our research. Some variations of graphs add more information to
this basic structure, for instance, colored vertices or directed edges.

Some types of graphs that will be important in this paper are: complete
graphs, (complete) bipartite graphs, k-partite graphs, planar graphs, directed
graphs, paths, cycles, trees, and wheels. Complete definitions are available
in Douglas B. West’s Introduction to Graph Theory [22].

A visibility graph is a graph corresponding to a geometric representation[16,
21]. For instance, Figure 2 shows a bar visibility graph (BVG), where ver-
tices u, v in a graph G are represented as a line segment (bar) parallel to the
x-axis in the plane, and an edge is given between u and v if there is a vertical
line segment between two bars that has endpoints on the bars corresponding
to u and v, and does not cross any other bars. Note that collapsing each bar
into a point provides a planar embedding of G [21].

Wismath (1985) proved that any planar graph G+ is bar-visibility rep-
resentable, where G+ is the graph obtained by extending a graph G by one
vertex v that is connected to all cutpoints of G. He further characterized the
classes of graphs that admit bar-visibility representations by their associated
cutpoints, also discussing weighted and directed cases. He left open the case
of weighted, undirected graphs, claiming that such a question would require
a partitioning problem [23].

Tamassia and Tollis (1986) extended several previous bar-visibility re-
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Figure 2: A strong bar visibility graph with four vertices.

sults (including Wismath), establishing notation for several slightly different
visibility rules:

1. weak visibility, based on an algorithm of Otten and van Wijk (1978),
which allows certain edges in the bar-visibility construction to be ig-
nored.

2. ϵ visibility, which expands visibility segments into visibility bands of
nonzero width.

3. strong visibility, which extends weak visibility by including an “if
and only if” clause, forcing all visibility bands to correspond to an
edge.

They gave linear- or polynomial-time algorithms to construct all three types
of representations from input graphs with the following conditions: (a) con-
structing a weak visibilty representation from any planar graph, (b) con-
structing an ϵ visibility representation from a 2-connected planar graph, and
(c) constructing a strong visibility representation from a maximal planar
graph and from a 4-connected planar graph [21].

Kant, Liotta, Tamassia, and Tollis (1993) proposed linear-time algorithms
for creating both bar and rectangle visibility representations, for both rooted
and free trees. They further discussed the area requirements of such dia-
grams, and proved that their algorithms construct diagrams with the min-
imal required area. They left open the questions of best possible constant
factors, characterizing the class of graphs that admit rectangle visibility di-
agrams (with strong visibility rules), and characterizing the graphs with 2-ϵ
representations (where no two visibility edges are allowed to cross) [16].
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Fekete, Houle, and Whitesides (1995); Fekete and Henk (1999); and Bose
et. al. (2002) study three-dimensional box visibility graphs [4, 12, 13].

Other variations on visibility rules are present in the literature, including
bar k-visibility, where a visibility band can intersect up to k bars. Geth-
ner and Laison (2011) showed the incomparability of unit bar k−visibility
graphs and bar k−visibility graphs and discussed a family of d−box visibil-
ity graphs with nested K8 rectangle visibility representations in their axis-
aligned 2−dimensional cross sections [14].

1.2 Rectangle Visibility Graphs

A rectangle visibility graph (RVG) is a visibility graph representable
by rectangles with axis-parallel sides in the plane [5, 6, 7, 15, 20]. Two
rectangles have an edge between their corresponding vertices in the graph
if there is a vertical or horizontal band of sight between the sides of the
two rectangles that does not intersect any other rectangles. Weak, ϵ, and
strong variations, similarly to BVGs, have been studied. Figure 3 gives an
example of a rectangle visibility graph, where the dashed red line shows a
non-example of visibility.
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Figure 3: G1, a maximal RVG on 9 vertices (34 edges).

Theorem 1 (Hutchinson, Shermer, Vince 1999 [15]). A rectangle visibility
graph on n ≥ 5 vertices has at most 6n− 20 edges.

An RVG is at most thickness 2, a direct result following from the obser-
vation that an RVG is the union of two bar visibility graphs [15].

Bose, Dean, Hutchinson, and Shermer (1996) proved that certain classes
of graphs are RVGs and gave efficient algorithms for constructing them.
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Namely, for 1 ≤ k ≤ 4, k−trees are RVGs. Graphs with caterpillar ar-
boricity 2 are RVGs. Any graph whose vertices of degree four or more form
a distance-two independent set is an RVG. And any graph with maximum
degree 4 is an RVG [3].

Dean and Hutchinson (1997) discussed which bipartite graphs are RVGs.
They showed that Kp,q with p ≤ q is an RVG if and only if p ≤ 4. They also
showed that a bipartite RVG on n ≥ 4 vertices has at most 4n − 12 edges
[6].

Streinu and Whitesides (2003) defined a topological rectangle visibil-
ity graph, which uses a pair of directed source-sink graphs to represent the
horizontal and vertical relationships of a framed rectangle visibility diagram,
cyclically ordered and allowing duplicate edges within this cyclic ordering
(which the authors called multiplicity). They used such graphs to propose
a quadratic-time algorithm which takes a pseudo-TRVG and constructs a
rectangle diagram with minimum extent in each direction. They left open
the question of how much information can be dropped from the TRVG and
still keep the efficiency of their recognition algorithm [20].

1.3 Rectangle of Influence Graphs

Let S be a set of points in the plane. Given two points p and q in S,
the rectangle of influence between them is an axis-parallel rectangle such
that p and q are on opposite corners of the rectangle of influence, as shown
in Figure 4. When this rectangle of influence is empty, i.e. it contains no
other points in S, we say p and q are separated (Alon et. al. 1985).

A (strong) rectangle of influence graph (RIG) is a visibility graph
where vertices correspond to points in the plane. Vertices p and q are adjacent
if and only if p and q are separated [1, 9, 10, 19, 24].

Weak RIGs are defined in previous literature, but will not be studied here
(see [2, 8, 9] for more).

The boundary of the rectangle of influence is included in closed RIGs
and not included in open RIGs (Liotta et. al. 1998). Figure 4 gives an
example of a closed rectangle of influence drawing (4a) and an open rectangle
of influence drawing (4b. Note that an open rectangle of influence is denoted
with dashed lines, and a closed rectangle of influence with solid lines [18].

The closed rectangle of influence in Figure 4a excludes the edges ac and
bd, since b and d are both on the boundary of the green rectangle of influence
between a and c. If we used open rectangles of influence on this drawing,
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we would get those two additional edges, which would make this graph into
K4 as opposed to the cycle, C4. Likewise, the open rectangles of influence in
Figure 4b include edges ad and ed, since a closed rectangle of influence be-
tween a and e would contain both a and e, which would violate the emptiness
condition.

Closed representationC4

a

b c

d a

b c

d

(a) A closed RIG.

Open representationK5

a

b

c

d

e a

b

c

d

e

(b) An open RIG.

Figure 4: rectangle of influence representations of C4 and K5.

Theorem 2 (Alon, Füredi, Katchalski 1985 [1]). A closed RIG on n vertices

has at most
[
n2

4

]
+ n− 2 edges.

The proof of this theorem relies on a theorem of de Bruijn, which applies
a theorem of Erdös and Szekeres [11, 17]. The structure of this proof proved
to be very useful in our research, as it is the basis of several of our own
proofs involving edge bounds—Theorems 13 and 16. The following proof is
adapted from Alon et. al. (1985), and has been edited for clarity [1].

Proof. The formula holds for RIGs on 2, 3, and 4 vertices since the number
of edges in the complete graph is less than or equal to the bound.

Suppose n ≥ 5. Let A be a set of n points in the plane. Let s(A) be the
number of pairs of points in A separated by empty rectangle of influences.
Let G(A) be the strong, closed rectangle of influence graph constructed from
A.

Suppose by way of induction that the edge bound above holds for n− 2,

i.e. s(A) ≤
[
(n−2)2

4

]
+ (n− 2)− 2.

Let a be a point of A whose x−coordinate is minimal. Let N be the set
of points adjacent to a in G(A). Let b be a point of N whose x−coordinate
is maximal.

Note that any points x and y have an edge between their corresponding
vertices in the graph if and only if there is no point z such that (x, z, y) is
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Figure 5: The definitions of a, b, N1, and N2.

weakly monotone, that is, their y−coordinates form a weakly increasing or
weakly decreasing sequence.

Let N1 be the points of N with y-coordinate greater than or equal to the
y-coordinate of a, as in Figure 5. The points of N1 cannot have the the same
x−coordinates, or else one would be contained in the other’s rectangle of
influence with respect to a. Then if the points of N1 are arranged in order of
increasing x−coordinate, their y−coordinates must form a strictly decreasing
sequence.

LetN2 be the points ofN\N1, that is all the points ofN with y−coordinate
less than the y−coordinate of a, again as shown in Figure 5 Similarly, the
points of N2 cannot have the same x−coordinates. If the points of N2 are
arranged in order of increasing x−coordinate, their y−coordinates must form
a strictly increasing sequence.

Thus in G(A), b is adjacent to at most two points of N. Then the number
of edges in G(A) incident to a or b is at most (n− 2) + 2 + 1 = n+ 1. Thus

s(A) ≤ s(A\{a, b}) + n+ 1.

By the induction hypothesis,

s(A\{a, b}) ≤ (n− 2)2

4
+ (n− 2)− 2.

Thus

s(A) ≤ (n− 2)2

4
+ (n− 2)− 2 + n+ 1 =

n2

4
+ n− 2.
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Open RIGs Closed RIGs
Representable wheels wheels

paths cycles
Kn, n ≤ 8 Kn, n ≤ 4

trees with ≤ 4 leaves
Not Representable non-path trees trees with > 4 leaves

Kn, n > 8 Kn, n > 4
cycles on > 3 vertices

Table 1: rectangle of influence representability.

Table 1 summarizes findings of Liotta et. al.(1998) of what families of
graphs are and are not representable using open and closed RIGs [18]. Fig-
ure 34a shows how these results relate to both RVGs and our own research.

2 Definitions and Preliminary Results

2.1 Corner Rectangle Visibility

Our main results concern a novel variation of the rectangle visibility problem,
in which each rectangle has a single “eye” in one of its corners, rather than
seeing from all four sides simultaneously. This variation turns out to be
quite similar to the rectangle of influence idea, and our intuitive definition of
corner rectangle sight can be further refined and formalized using rectangles
of influence.

E

S

N

W

NE

NW SE

SW

Figure 6: The four corners of a rectangle.

Formally, let S be a set of rectangles in the plane, with vertical and
horizontal sides, whose interiors do not intersect. We label the four corners
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of a corner rectangle north, east, south, and west as shown in Figure 6. We
denote the north corner of a rectangle A as AN , the south as AS, and so on
for east and west. We further denote the x−coordinate of the (without loss
of generality) north corner of A as AN(x), and its y−coordinate as AN(y).
Furthermore, we label the sides of the rectangle NE, SE, SW, and NW to
indicate which corners they are between. For each rectangle A in S, label a
corner cA of A as its eye, as shown in Figure 7. We call a rectangle with an
designated eye a corner rectangle. A corner rectangle whose eye is at its
north corner is a north rectangle. We similarly define east rectangles,
south rectangles, and west rectangles. The viewing region of A is the
unique closed quarter-plane RA with corner cA and intersecting A exactly at
cA. Suppose there is some rectangle B such that the intersection of B and
the closed region RA is nonempty. Let the shadow UA,B of B with respect
to A be the translated copy of RA whose vertex is the corner of B exactly
opposite the visibility direction of A, that is, if A is an east rectangle, the
vertex of UA,B would be the west corner of B.

RA

A
CA

UA,B

B

Figure 7: An example of cA, RA, and UA,B.

Now, with those definitions in hand, let us introduce the notion of sight
for corner rectangles. A sees another rectangle B if:

1. B is not fully contained in UA,C for some C intersecting RA that is
neither B nor A, and

2. the intersection of B with RA has positive area.

We refer to these conditions as sight condition 1 and sight condition 2.
We can also define corner rectangle sight using rectangles of influence, as in
the following lemma.

Lemma 3. A sees B if and only if:

1. There exists a non-degenerate, closed rectangle of influence I from cA
to some point on the boundary of B,
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2. I is tangent to A (i.e. I intersects A at exactly cA), and

3. I does not contain any point of a rectangle C in S that is distinct from
both A and B.

We will refer to these as lemma condition 1, lemma condition 2, and
lemma condition 3, respectively.

Proof. Let A, B, and C be distinct corner rectangles.
First, suppose that A sees B, that is, suppose sight condition 1 and sight

condition 2. Notice that by sight condition 1, there must be some point b on
the boundary of B in RA that is not contained in UA,C . Now, consider the
rectangle of influence I from the eye of A to b. We will show that I satisfies
lemma conditions 1, 2, and 3.

1. By definition, I separates cA and b, which is on the boundary of B.
Furthermore, since B ∩ RA has some positive area, b is not on the
boundary of RA. Therefore, I must be non-degenerate.

2. From sight condition 2, we know that the intersection of B with RA

is not empty. By construction, b is in RA, and by definition the only
point of A contained in RA is cA. Thus, I does not intersect any point
of A other than cA.

3. Since b is outside UA,C , the intersection of I with UA,C must be empty.
Recall that C is completely contained in UA,C by definition—thus, the
intersection of I with C must also be empty.

Therefore, all three conditions are satisfied when A sees B.
Second, suppose that lemma conditions 1, 2, and 3 hold for A, B, and C.

We will show that sight conditions 1 and 2 follow from these assumptions.
Let b be an arbitrary point on the boundary of B and, as before, let I

be the non-degenerate rectangle of influence between cA and b (which follows
from lemma condition 1).

1. By way of contradiction, suppose b is in the shadow UA,C . However,
notice that since rectangles of influence and corner rectangles are axis-
parallel, there must be at least one point in C with x− or y− coordinate
equal to or less than that of b. However, this violates lemma condition
3. Having arrived at a contradiction, we conclude that if the arbitrary
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b is in the shadow UA,C , B must be fully contained within UA,C ; ergo,
as long as there is some b which is not in UA,C , sight condition 1 will
be satisfied.

2. It follows from lemma condition 2 and the definition of the visibility re-
gion RA that I will be fully contained within RA. Since b is included as
a point on I, b must be within RA. Since I is non-degenerate rectangle
of influence by lemma condition 1, both the x− and y−coordinates of b
must be distinct from those of cA (if either coordinate was equal, that
would make I degenerate, i.e. a rectangle with no width, i.e. a line
segment). Thus, b must not be exactly on the boundary of RA, which
implies that the intersection of B and RA has some positive area.

Having satisfied sight conditions 1 and 2, we conclude that lemma conditions
1, 2, and 3 imply that A sees B.

We have shown both directions of the equivalence, therefore, we assert
that the definition of sight by sight conditions 1 and 2 is equivalent to the
definition given by lemma conditions 1, 2, and 3.

A
B CCA

D

Figure 8: A definition of sight using rectangles of influence.

Figure 8 gives examples of rectangles of influence drawn from cA to rect-
angles B, C, and D. The rectangle of influence between A and B has nonzero
area, is tangent to A, and does not intersect any other rectangles. Further,
we can see that B ∩RA is nonempty, and that B does not have any shadows
cast upon it. Thus, under both definitions, A sees B. Notice that the rectan-
gle of influence drawn between A and C contains points in B, which violates
lemma condition 3. We can also observe that C∩RA is fully contained within
UA,B. Thus, C is not visible to A under either definition. Further, notice
that the rectangle of influence between A and D intersects the northeast side
of A, which violates lemma condition 2. This aligns with the observation
that D does not intersect RA.
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2.2 Corner Rectangle Visibility Graphs

Given a set of rectangles S with viewing corners (Figure 9a), we construct
a graph G with a vertex for each rectangle in S and an edge between two
vertices a and b if and only if, for their corresponding rectangles A and B
in S, either A sees B or B sees A (Figure 9c). We say that G is a corner
rectangle visibility graph (CRVG) and that S is its corner rectangle
visibility representation. We sometimes use directed edges (Figure 9b) to
denote which rectangle is looking, and which is being looked at.

A

D

C

B

E

(a) Corner rectangle diagram.

A

B

C

DE

(b) Directed.

A

B

C

DE

(c) Undirected.

Figure 9: A CRVG representation and its CRVG with and without directed
edges.

The neighborhood of a vertex a on a graph G, N(a), is the subgraph
composed of all the vertices adjacent to v and the edges between them [22].
Similarly, we define the neighborhood of a rectangle A in the CRV repre-
sentation S, N(A), to be the set of all rectangles that see A or are seen by
A. Note that N(A) is exactly the neighborhood of the vertex corresponding
to A in G. This justifies our use of the same notation for neighborhoods in
both the CRV representation and its corresponding CRVG. In general, we
will use uppercase letters to label rectangles and the same lowercase letters
to label their corresponding vertices in a graph. In a directed graph, the in-
neighborhood N−(a) is the subgraph of N(a) with edges directed towards
a. Similarly, the out-neighborhood N+(a) is the subgraph of N(a) where
edges are directed away from a [22]. We use in- and out-neighborhoods to
describe sight, so for a rectangle A, N+(A) is the set of rectangles seen by A
and N−(A) is the set of rectangles that see A.
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2.3 Monotonic Sequences

In our explorations of corner rectangle diagrams, two important types of
monotonic sequences emerged: one where every rectangle in the sequence is
visible from one direction, and one where every rectangle is visible from two
directions.

Figure 10: A sequence of N-monotone rectangles.

Let T be a set of rectangles and let D be one of the four cardinal direc-
tions: north, south, east, or west. The rectangles in T form a D-monotone
sequence if for all rectangles Ti in T , the set of points Ti,D (that is, the cor-
ner of Ti in direction D) forms a monotonically increasing or monotonically
decreasing sequence. For example, for any A,B,C ordered by increasing
x−coordinate in T , T is N -monotone if

AN(y) < BN(y) < CN(y).

Proposition 4. Any path can be drawn in a (south-facing) D-monotone
sequence.

Proof. An example of a D-monotone SCRVG representation of a path is
given in Figure 11. More rectangles can be added in a similar manner to
create a larger path.
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Figure 11: An N -monotone sequence of rectangles forming a path P4.

The construction shown in Figure 11 is informally known as the “wifi
construction” and is especially important in constructions later in the paper
because it is both N -monotone and E-monotone.

Proposition 5. Any tree can be drawn in a (south-facing) D-monotone se-
quence.

Proof. A D-monotone SCRVG representation of an arbitrary tree is shown
in figure 12.

......

... ...
...

...

... ...

...
... ...

...

...

...
... ...

...
...

Figure 12: A D-monotone SCRVG representation of an arbitrary tree.
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3 Results

3.1 South Corner Rectangle Visibility Graphs

We now consider a variation of CRVGs which have only rectangles looking
south. We call a CRVG whose representation only has south rectangles a
south corner rectangle visibility graph (SCRVG). One reason SCRVGs
are notable is that when considering directed graphs, they have no directed
cycles, since no rectangle can look “up” or backwards, as all rectangles look
“down.” Also note that these results apply to any single-direction corner
rectangle representation, e.g. where all rectangles look north, east, or west.

Proposition 6. The complete graphs K1, K2, K3, and K4 are SCRVGs. The
complete graph Kn is not an SCRVG for n ≥ 5.

Proof. A single south rectangle is an SCRVG representation of K1. SCRVG
representations of K2 K2, K3, and K4 are shown in Figure 13. The fact that
Kn is not an SCRVG for n ≥ 5 follows from Theorem 13 below.

(a) An SCRVG representation of K2. (b) An SCRVG representation of K3.

(c) An SCRVG representation of K4.

Figure 13: Complete SCRVG Representations.
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Proposition 7. All complete bipartite graphs Km,n are SCRVGs for all pos-
itive integers m and n.

Proof. An SCRVG representation of an arbitrary complete bipartite graph
is shown in Figure 14.

Figure 14: An SCRVG representation of an arbitrary complete bipartite
graph.

Proposition 8. All complete bipartite graphs with a path Km,n + Pn are
SCRVGs for all positive integers m and n.

Proof. An SCRVG representation of an arbitrary complete bipartite graph
with a path is shown in Figure 15.

Figure 15: An SCRVG representation of an arbitrary complete bipartite
graph with a path.
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We will now prove some lemmas that we will use to prove Theorem 13,
as well as other theorems later in the paper. For purposes of generality, we
refer to an arbitrary direction as D and its opposite direction as −D. That
is, if D is north then −D is south, and similarly for the other directions.

A

Bj−1

Bj

Figure 16: The south rectangle A cannot see Bj if the north corner of Bj

has greater x-coordinate and smaller y−coordinate than the north corner of
Bj−1 in Lemma 9.

Lemma 9. The out-neighborhood of a D-directional rectangle A in a CRVG
representation is a −D-monotone sequence of rectangles.

Proof. Without loss of generality, let A be a south rectangle. Let B1, B2,
. . ., Bn be the elements of N(A), ordered by increasing x−coordinate of their
north corners. Because Bi can be seen by A for all 1 ≤ i ≤ n, Bi ∩RA must
be a 2-D region in RA that is not covered by a shadow.

By way of contradiction, suppose B1, . . . , Bn do not form an N-monotone
sequence. Thus, there is some Bj whose north y−coordinate is less than or
equal to the north y−coordinate of Bj−1. However, notice that since the
north corner of Bj has a greater x−coordinate and a smaller y−coordinate
than the north corner of Bj−1, it is completely in the shadow UA,Bj−1

, as in
Figure 16. Thus we have a contradiction, since Bj cannot be visible to A if
it is completely inside UA,Bj−1

, but it was initially supposed that it would be
visible to A.
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A

B

Figure 17: A rectangle B that is side-visible from A.

For a D-directional rectangle A, B is side-visible to A if A sees B but
the −D corner of B is not in RA, as shown in Figure 17.

Lemma 10. For a south rectangle A, there is at most one rectangle B side-
visible from A where the sight is to the NW side of B, and similarly for other
directions.

Proof. Let A be a south rectangle. Let B be a rectangle side-visible from A
where the sight is to the NW side of B. By way of contradiction, suppose
there is another rectangle C, side-visible from A, where the sight from A is
also to the NW side of C.

Because A is looking south at theNW sides of B and C, all x−coordinates
of A are strictly less than the x−coordinates of B and C. Without loss
of generality, suppose the x−coordinates of B are strictly less than the
x−coordinates of C.

Then any rectangle of influence from the south corner of A to the NW
side of C would intersect B. Thus C cannot also be side-visible to its NW
side from A.

Lemma 11. For a rectangle A, there are at most two rectangles that are
side-visible from A.

Proof. Without loss of generality, let A be a south rectangle. Note that a
rectangle that is side-visible from A must be side-visible to its NW or NE
side. By Lemma 10, there is at most one rectangle side-visible from A to its
NW side. By the same argument, there is at most one rectangle side-visible
from A to its NE side. Thus there are at most two rectangles side-visible
from A. See Figure 18 for an example.
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A

B

C

D

Figure 18: B and C are side-visible from A but D is not, as in Lemma 11.

Lemma 12. A D-directional rectangle A in an −D-monotone sequence can
see at most two other rectangles in the sequence.

Proof. Without loss of generality, let X be an N-monotone sequence of rect-
angles and A be a south rectangle in X. By definition of N-monotone, the
north corners of all rectangles in X are outside of RA. Thus, any rectangles
in X seen by A must be side-visible from A. By Lemma 11, there are at
most two rectangles side-visible from A. Thus A can see at most two other
rectangles in X.

A similar result is given by Corollary 21.

Theorem 13. An SCRVG on n vertices has at most
[
n2

4

]
+ n − 2 edges,

where n ≥ 2, and this bound is tight.

Proof. A representation of an SCRVG on n vertices with
[
n2

4

]
+ n− 2 edges

is shown in Figure 19. We will now prove that an SCRVG on n vertices can

have no more than
[
n2

4

]
+ n− 2 edges by induction.

The bound holds for 2, 3, and 4 vertices because the number of edges in
the complete graph is less than or equal to the number of edges given by the
formula.

Let n ≥ 5, and let S be a set of n south rectangles and G be the graph
represented by S. By way of induction, suppose that all SCRVGs on n − 2

vertices have at most
[
(n−2)2

4

]
+ (n− 2)− 2 edges.
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Let A be the rectangle in S whose eye has minimal x−coordinate. Let
B1, . . . , Bk be the rectangles in N(A). Since A is the rectangle with minimal
x−coordinate, there can be no rectangles in S that see A. Thus N(A) =
N+(A).

Since G is an SCRVG, it has no directed cycles. Thus, there must be
some Bj that is not seen by any other rectangle in N(A).

By Lemma 12, Bj can see at most two other rectangles in N(A).
Then the number of edges incident to either a or bj is (n−2)+2+1 = n+1

(that is n− 2 edges between a and bi ̸= bj, 2 edges from bj to other vertices
in N(a), and 1 edge between a and b.)

Counting the edges in G gives |E(G)| ≤ E(G\{a, bj}) + n + 1. By the

induction hypothesis, |E(G\{A,Bj})| ≤
[
(n−2)2

4

]
+(n−2)−2. Thus |E(G)| ≤[

(n−2)2

4

]
+ (n− 2)− 2 + n+ 1 = n2

4
+ n− 2.

Figure 19: A representation of an SCRVG with n vertices and
[
n2

4

]
+ n− 2

edges.
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3.2 South West Corner Rectangle Visibility Graphs

We will now study another variation of CRVGs which have only rectangles
looking south or west and call them south west corner rectangle vis-
ibility graphs (SWCRVGs). When studying directed graphs, SWCRVGs
also have no directed cycles, since similarly to SCRVGs, all rectangles look
“down.” The results on SWCRVGs also apply to any two-direction subset of
CRVGs where the two directions are perpendicular.

Proposition 14. All cycle graphs Cn are SWCRVGs for all positive integers
n ≥ 3.

Proof. An SWCRVG representation of an arbitrary cycle is shown in Figure
20.

Figure 20: An SWCRVG representation of an arbitrary cycle.

We define Kj,l,m,n +Pj, a complete k-partite graph in which a partite set
containing j vertices is connected by a path, for positive integers j, l, m, and
n.

Proposition 15. All complete 3-partite graphs with a path Kl,m,n + Pn are
SWCRVGs for all positive integers l, m, and n.

Proof. An SWCRVG representation of an arbitrary 3-partite graph with a
path is shown in Figure 21.
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Figure 21: A representation of an SWCRVG with n vertices and
[
n2

3
+ n

3

]
−1

edges.

Theorem 16. An SWCRVG on n vertices has at most
[
n2

3
+ n

3

]
− 1 edges

and the bound is tight.

Proof. A representation of an SWCRVG on n vertices with
[
n2

3
+ n

3

]
−1 edges

is shown in figure 21. We will now prove that an SWCRVG on n vertices can

have no more than
[
n2

3
+ n

3

]
− 1 edges.

The bound holds on 1, 2, 3, and 4 vertices because the number of edges
in the complete graphs are less than or equal to the number of edges given
by the formula. Thus we induct on n ≥ 5.

Let S be a set of n south and west rectangles. Let G be the graph
represented by S. By induction, suppose that all SWCRVGs on n−3 vertices

have at most
[
(n−3)2

3
+ n−3

3

]
− 1 edges.

Note that there are no directed cycles in G. Let A be the rectangle in S
whose eye has maximal y−coordinate. Thus there can be no rectangles that
see A so N(A) = N+(A). Without loss of generality, suppose A is a south
rectangle. Let B be a rectangle that is not seen by any other rectangles
in N(A). Let C be a rectangle that is not seen by any other rectangles in
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N(A)∩N(B). Since B and C are seen by A, by Lemma 9, B and C are part
of an N-monotone sequence.

Case 1. B is a south rectangle. Then the north corner of C is outside
of RB, but B sees C so C must be side-visible from B. Since N(A) is an
N-monotone sequence and B is a south rectangle, there are at most two
rectangles in N(A) ∩ N(B). If C is one of those rectangles, there can be at
most one rectangle in N(A) ∩N(B) ∩N(C).

Case 2. B is a west rectangle. The visibility from B to C need not be
side-visibility. If C is also a west rectangle, there is at most one rectangle
in the N-monotone sequence of N(A) that is also in N(C). This rectangle
may also be seen by B and thus be in N(B). If C is a south rectangle, any
rectangles in N(A)∩N(C) must be side-visible from C. By Lemma 11, there
are at most two of these rectangles. However, at most one of them is in
N(B).

Then |N(A) ∩N(B) ∩N(C)| ≤ 1. Thus the number of edges incident to
a, b, and c is at most (n− 3) + (n− 3) + 1 + 3 = 2n− 2. That is, there are
at most n− 3 edges from each of a and b to vertices outside of {a, b, c}, at
most 1 edge from c, and 3 edges between a, b, and c.

Thus |E(G)| ≤ E(G\{a, b, c}) + 2n − 2. By the induction hypothesis,

|E(G\{a, b, c})| ≤
[
(n−3)2

3
+ n−3

3

]
− 1. Thus |E(G)| ≤

[
(n−3)2

3
+ n−3

3

]
− 1 +

2n− 2 =
[
n2

3
+ n

3

]
− 1.

3.3 Corner Rectangle Visibility Graphs

In this section we provide CRVG representations for certain families of graphs.

Proposition 17. All complete 4-partite graphs Kj,l,m,n are CRVGs, for all
positive integers j, l, m, and n.

Proof. A CRVG construction of an arbitrary complete 4-partite graph is
shown in Figure 22.

With rectangles distributed as evenly as possible, a complete 4-partite
graph on n vertices has ⌊3

8
n2⌋ edges. Note that by Theorem 13 and Theorem

16 a complete 4-partite graph is a CRVG that is neither an SCRVG nor an
SWCRVG.
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Figure 22: A CRVG representation of an arbitrary complete 4-partite graph.

Proposition 18. All wheel graphs Wn are CRVGs.

Proof. A CRVG representation of an arbitrary wheel graph is shown in Figure
23.

Figure 23: A CRVG representation of an arbitrary wheel.
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(a) A CRVG representation of K2. (b) A CRVG representation of K3.

(c) A CRVG representation of K4. (d) A CRVG representation of K5.

Figure 24: Complete CRVG Representations.

Proposition 19. The complete graphs K1, K2, K3, K4, and K5 are CRVGs.
The complete graphs Kn for n ≥ 6 are not CRVGs.

Proof. Figure 24 shows CRVG representations for K2 (24a), K3 (24b), K4

(24c), and K5 (24a). Theorem 25 shows that Kn for n ≥ 6 are not repre-
sentable as CRVGs, i.e. K5 is the largest complete CRVG.

Lemma 20. In a CRVG representation of a directed graph, a rectangle in a
clique of size at least 5 has out-degree at most 3.

Proof. In a CRVG representation S, consider a corner rectangle A in a clique
of size at least 5. By way of contradiction, suppose N+(A) > 3. Without loss
of generality, suppose A is a south rectangle.

By Lemma 9, N+(A) is an N -monotone sequence of rectangles. Denote
the rectangles in N+(A) as N+(A) = {T1, T2, T3, ..., Tk} from left to right in
S, with k ≥ 4. Consider the rectangles T1, T2, T3, and T4. By our assumption,
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these rectangles form a clique of size 4. Therefore the rectangles T1 and T4

are adjacent in the graph. This can happen in one of three ways: either
T1,S(x) > T3,S(x), or T4,W (y) < T2,W (y), or both T1,S(x) > T2,S(x) and
T4,W (y) < T3,W (y), as shown in Figure 25. The first two cases are analogous.

T1

T2

T3

T4

(a) Case 1.

T1

T2

T3

T4

(b) A symmetric
representation of Case 1.

T1

T2

T3

T4

(c) Case 2.

Figure 25: Three possible ways to create the T1 ∼ T4 edge as described in
Lemma 20.

Case 1. T1,S(x) > T3,S(x). We also know that T2 ∼ T4. This can happen in
one of two ways: either T2,S(x) > T3,S(x) or T4,W (y) < T3,W (y) as shown in
Figure 26.

T1

T2

T3

T4

(a) Case 1a.

T1

T2

T3

T4

(b) Case 1b.

Figure 26: The subcases of Case 1 of Lemma 20.

Case 1a. T2,S(x) > T3,S(x). In this case T1 and T3 can’t see each other.

Case 1b. T4,W (y) < T3,W (y). If T4 sees T3 then T3,S(y) < T4,S(y) and
T4 ̸∼ T1. Therefore T3 sees T4 so T3 is south or east. Therefore to get an
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edge between T2 and T3, either T2 must face east and there is no edge between
T1 and T2, or T2,S(x) > T3,S(x) and T1 ̸∼ T3.

Case 2. Both T1,S(x) > T2,S(x) and T4,W (y) < T3,W (y). This case
encounters the same problem as Case 1b. That is, if T4 sees T3 then
T3,S(y) < T4,S(y) and T4 ̸∼ T1. Therefore T3 sees T4 so T3 is south or
east. Therefore to get an edge between T2 and T3, either T2 must face east
and there is no edge between T1 and T2, or T2,S(x) > T3,S(x) and T1 ̸∼ T3.

Thus it is not possible for the N -monotone sequence of rectangles T1, T2,
T3, and T4 to form a complete graph. Therefore, a corner rectangle A in a
clique of size at least 5 has out-degree at most 3.

Corollary 21. There is no representation of K4 using four D-monotone
rectangles, for any direction D.

We will now prove some lemmas that will aid in the proof that K6 is not a
CRVG. We also introduce a type of diagram we will refer to as a dot diagram
to help us describe properties of S, for example as shown in Figure 27. Each
ellipse in the diagram represents the out-neighborhood of A, B, or C and is
labeled with the name of the rectangle and its possible directions. Each dot
represents a rectangle in S, labeled {x1, x2, x3, x4, x5, x6} from left to right
in the diagram (so A, B, and C are three of these rectangles).

A

B

Figure 27: A dot diagram for Lemma 22.

Lemma 22. Let S be a CRVG representation of K6 and let A and B be
rectangles in S with out-degree 3. Then N+(A) ̸= N+(B).

Proof. If N+(A) = N+(B) then A and B can’t see each other, since neither
A nor B can be in its own out-neighborhood.

Lemma 23. Let S be a CRVG representation of K6 and let A and B be
rectangles in S with out-degree 3. If A and B are facing the same direction,
then N+(A) and N+(B) must be disjoint.
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A (south) B (south)

(a) N+(A)∩N+(B) contains 1 rectangle.

A (south) B (south)

(b) N+(A)∩N+(B) contains 2 rectangles.

Figure 28: Dot diagrams for Lemma 23.

Proof. SupposeA andB are facing the same direction and their out-neighborhoods
are not disjoint. Without loss of generality, suppose they are both facing
south. By Lemma 22, their out-neighborhoods intersect in one or two rect-
angles, as shown in Figure 28.

Since A and B are facing the same direction, in order to make an edge
between A and B, one must be in the viewing region of the other. Say B is
in the viewing region of A, as in Figure 29.

Consider the rectangle x4. It is in N+(B) and not in N+(A). Therefore
x4 must see A. There is no way to place x4 such that B sees x4, x4 sees A,
and A doesn’t see x4 as shown in Figure 29.

A

B x4

Figure 29: A CRVG representation of the dot diagram in Figure 28.

Lemma 24. Let S be a CRVG representation of K6 and let A and B be
rectangles in S with out-degree 3. If A and B are facing opposite directions,
then N+(A) and N+(B) must be disjoint.

A (north) B (south)

(a) N+(A)∩N+(B) contains 1 rectangle.

A (north) B (south)

(b) N+(A)∩N+(B) contains 2 rectangle.

Figure 30: Dot diagrams for Lemma 24.

28



A

B

Figure 31: A CRVG representation for Lemma 24

Proof. Since A and B are adjacent, facing opposite directions, and both see
an additional rectangle, their viewing regions must intersect. Thus A and B
must be placed so they can see each other, as shown in Figure 31. However,
no additional rectangles can be placed in the intersection of their viewing
neighborhoods without blocking the sight between A and B.

Theorem 25. K6 is not a CRVG.

Proof. By way of contradiction, suppose S is a CRVG representation of K6.
By Lemma 20, a corner rectangle in a S has out-degree at most 3.

As there are 15 edges in K6, the sum of the out-degrees of its vertices is at
least 15. If it is exactly 15, the sequence of out-degrees of K6 must be either
(3, 3, 3, 2, 2, 2), (3, 3, 3, 3, 2, 1), or (3, 3, 3, 3, 3, 0). Thus at least 3 rectangles
in S must have out-degree 3. Call these 3 rectangles A,B, and C.

By Lemmas 22, 23, and 24, if the out-neighborhoods of two rectangles
with out-degree 3 intersect, those rectangles must face in perpendicular di-
rections. Without loss of generality, the out-neighborhoods and directions of
A, B, and C are given by Figure 32.

A (north) B (west) C (north or south)

Figure 32: A dot diagram of with A, B, and C.

Since no rectangle can be in its own out-neighborhood and the out-
neighborhoods of A and C cover all the rectangles, A must be in N+C and
C must be in N+(A). Thus the edge between A and C is bi-directed, and
the total out-degree of the graph is at least 16. Therefore the sequence of
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out-degrees of K6 must be either (3, 3, 3, 3, 2, 2), (3, 3, 3, 3, 3, 1), and a
fourth rectangle D must have out-degree 3.

A (north) B (west) C (north or south)

D (east or west)

Figure 33: A dot diagram with A, B, C, and D.

Again by Lemmas 22, 23, and 24, D must face either east or west and its
out-neighborhood is shown in Figure 33. By the same logic as before, B must
be in N+(D) and D must be in N +(B). Thus the edge between B and D is
bi-directed, and the total out-degree of the graph is at least 17. Therefore the
sequence of out-degrees of K6 must be (3, 3, 3, 3, 3, 2), and a fifth rectangle
E must have out-degree 3. There is no way to add the out-neighborhood of
E to Figure 33 and we have a contradiction.

Corollary 26. CRVGs for n = 7 and n = 8 must be missing at least 2 and 3
edges from K7 and K8 (i.e. they have at most 19 and 25 edges, respectively).

Proof. Any graphs on n = 7 vertices that have more than 19 edges contain
an embedded K6. Thus, by Theorem 25, such graphs are not possible.

A similar argument follows for n = 8 with e > 25.

Note that we have examples of CRVGs with 7 vertices and 19 edges, and
8 vertices and 25 edges, so the bound in Corollary 26 is tight.

3.4 Classification Summary

The Venn diagram in Figure 34 shows various (families of) graphs that are
rectangle visibility graphs [15], open rectangle of influence graphs [18], and
corner rectangle visibility graphs. Figure 34b expands on the CRVG bubble
in Figure 34a, showing which graphs are particular subcategories of CRVGs,
namely D-Monotone CRVGs (Section 2.3), south CRVGs (Section 3.1), and
south West CRVGs (Section 3.2).
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RVG

OPEN RIG CRVG

K5,5+F5

e ≤ [n2/4]+n-2Km,n+Pm+Pn, n≥5

K6, K7, K8

G1

K2,2,2,2,1

(?)

e ≤ 6n-20

Kn,n≥9

Wheels
Kn, n≤5

Pn Trees
Cn, n≥4

Kj,l,m,n

Km,n+Pn

Kl,m,n+Pn

Km,n, n≥5

(a) RIGs, CRVGs, and RVGs.

CRVG

Kl,m,n+Pn

Cn, n≥4
e ≤ [n2/3+n/3]-1

SCRVG

Trees

SWCRVG

D-MONOTONE

K5,5+F5
Kj,l,m,n

Wheels
K5

Km,n+Pn
Km,n, n≥5
Kn,   n≤4

Pn

(b) Types of CRVGs.

Figure 34: Venn diagrams comparing graph representability with different
rules.
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4 Open Questions and Possible Extensions

There are many interesting questions that follow from our work. Some we
have pondered more than others but all have much more potential for explo-
ration.

1. Recall that all bar visibility graphs are planar [21, 23], but since K5

is a CRVG, not all CRVGs are planar. Are all planar graphs CRVGs?
Is there an algorithm to create a CRVG representation given a planar
graph?

2. What is the maximum number of edges in a D-monotone CRVG?

3. What is the maximum number of edges in a CRVG? Since K6 is not
a CRVG but K6 − e is, we know the maximum number of edges in
a CRVG with 6 vertices is 14. By Lemma 26, the first open case is
K2,2,2,2,1 with 9 vertices and 32 edges, referenced in Figure 34.

4. Can all SCRVGs with fewer edges than the SCRVG edge bound be
drawn? What about the SWCRVG edge bound?

5. What other families of graphs are CRVGs?

6. Can CRVGs be recognized in polynomial time?

7. How would our results change if the definition of shadows cast by rect-
angles was changed to allow, for example, rectangles A and D to see
each other in Figure 9?

8. What about corner rectangles which can see from more than one of
their corners at once? Note that even if rectangles can see from all four
of their corners, these graphs are distinct from RIGs since stars are
representable this way but are not representable as RIGs in general.
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